ConcEpt validatioN sTudy foR fusElage wake-filLIng propulsioN intEgration

31st Congress of the International Council of the Aeronautical Sciences
9-14 September 2018, Expominas, Belo Horizonte, Brazil

A. Seitz, F. Peter, J. Bijewitz, A. Habermann, Z. Goraj, M. Kowalski,
A. Castillo Pardo, C. Hall, F. Meller, R. Merkler, O. Petit, S. Samuelsson,
B. Della Corte, M. van Sluis, G. Wortmann and M. Dietz
The CENTRELINE Project – In Short

- **Call**: MG-1.4–2016-2017: Breakthrough innovation
- **Budget**: EUR 3,680,519.78 (100% financed by the EU)
- **Duration**: 36 months, June 2017 – May 2020

High-level objectives at aircraft level:

- Proof-of-concept (target TRL at the end of the project: 3-4)
- 11% CO\textsubscript{2} reduction vs. R2035 (–40% CO\textsubscript{2} vs. Y2000 SRIA ref.)
- 11% reduction of NO\textsubscript{x} emissions vs. R2035 (–84% NO\textsubscript{x} vs. Y2000 SRIA ref.)
The Design Paradigm Shift for CENTRELINE

Optimised fuselage fan (FF) integration for turbo-electric drive:

- FF location at very aft-tip of fuselage
- Minimised FF net specific thrust
- Optimised aerodynamics, structural integration and power train design
- Minimised electrical power installation
CENTRELINE – Research Focal Points

➤ Addressing the main challenges for a Propulsive Fuselage aircraft concept

➤ Design of the fuselage fan turbo-electric powertrain

➤ Understanding of the aerodynamic effects of fuselage wake-filling propulsion integration

➤ Multi-disciplinary aircraft design integration and optimisation

➤ Synergistic aero-structural integration of the BLI propulsor
CENTRELINE – Methodological Approach

- High end & high fidelity simulation techniques
 - Overall aircraft and fuselage fan aerodynamics
 - Key structural elements
 - Components of the turbo electric powertrain
- Low speed wind tunnel and BLI fan rig testing
- Multi-disciplinary aircraft pre-design integration and optimisation
- Rigorous concept assessment and benchmarking

Figure: Meridional view of the BLI fan rig at the University of Cambridge (top) & Computational domain of the BLI fan rig running with inlet distortion (bottom) (Ref.: Gunn and Hall, ASME GT2014-26142, 2014)

Figure: PFC design and performance refinement based on 2D-axisymmetric CFD-in-the-loop performed in FP7 DisPURSAL (Ref.: Seitz et al., Proceedings of EC-Aerodays 2015)
Targeted PFC technology EIS in 2035
- Medium-to-long range wide-body aircraft segment determined most impactful
- R2000 baseline aircraft: Airbus A330-300 featuring RR Trent 700 Series engines: stretched to accommodate 340 Pax

R2035 aircraft definition
- Advanced aerodynamic, structural and systems technologies for EIS 2035
- UHBR geared turbofan power plants
- Systems sizing for product family including stretch and shrink versions of the baseline aircraft by +/- 15% payload capacity

Basic aircraft top level requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology freeze / Entry-into-Service</td>
<td>2030 / 2035</td>
</tr>
<tr>
<td>Design range</td>
<td>6500 nmi</td>
</tr>
<tr>
<td>Design payload</td>
<td>340 PAX in 2-class arrangement</td>
</tr>
<tr>
<td>Airport compatibility limits (ICAO Annex 14)</td>
<td>Code E (52 m < x < 65 m)</td>
</tr>
<tr>
<td>Take-off Field Length (MTOW, SL, ISA)</td>
<td>≤ 2900 m</td>
</tr>
<tr>
<td>Second segment climb</td>
<td>340 PAX, DEN, ISA+30°C</td>
</tr>
<tr>
<td>Landing Field Length (MLW, ISA)</td>
<td>≤ 2400 m</td>
</tr>
<tr>
<td>Approach speed (MLW, SL, ISA)</td>
<td>≤ 145 KCAS</td>
</tr>
<tr>
<td>ETOPS Capability</td>
<td>240 mins</td>
</tr>
<tr>
<td>Design Service Goal</td>
<td>50000 Cycles</td>
</tr>
</tbody>
</table>

R2035 (Baseline Family Member) Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing span</td>
<td>65 m</td>
</tr>
<tr>
<td>Operating Empty Weight</td>
<td>120.2 t</td>
</tr>
<tr>
<td>Maximum Take-off Weight</td>
<td>222.9 t</td>
</tr>
<tr>
<td>Maximum Wing Loading</td>
<td>644 kg/m²</td>
</tr>
<tr>
<td>Design block fuel vs. year 2000 baseline (R2000)</td>
<td>–27%</td>
</tr>
</tbody>
</table>
PFC aircraft configurational determination based on qualitative down-select

Gauging of alternate PFC designs using semi-empirical methods

Evaluation based on “Power Saving Coefficient” (cf. L.H. Smith, 1993):

\[P_{SC} = \frac{P_{Ref} - P_{PFC}}{P_{Ref}} \]

Target Design Point

11.5% LPT power savings for PFC target design in cruise

~2% penalty for additional aircraft gross weight due to turbo-electric power train included in power savings

Synthesis of Initial PFC Aircraft Target Design

- Multi-disciplinary PFC aircraft / propulsion conceptual sizing
 - Inclusion of conceptual modelling / preliminary assessments for the
 - Aft-fuselage propulsion installation
 - Turbo-electric power train
 - Main power plant design and performance

<table>
<thead>
<tr>
<th>Initial PFC Design Property</th>
<th>Δ vs. R2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing Span</td>
<td>– 0.2%</td>
</tr>
<tr>
<td>Main Landing Gear Height</td>
<td>+ 11%</td>
</tr>
<tr>
<td>Maximum Wing Loading</td>
<td>+/− 0%</td>
</tr>
<tr>
<td>Operating Empty Weight</td>
<td>+ 5.7%</td>
</tr>
<tr>
<td>Design Payload Weight</td>
<td>+/- 0%</td>
</tr>
<tr>
<td>Design Block Fuel</td>
<td>– 11.3%</td>
</tr>
<tr>
<td>Maximum Take-off Weight</td>
<td>– 0.5%</td>
</tr>
</tbody>
</table>

- 47% ToC Thrust
- 6% ToC Thrust*

- 1.4 Design FPR Electric Fan
- 8 MW Motor (Design Power)
- 95% Motor Efficiency
- 2.34m (92 inch) Fan Diameter

- 4.6 MW Generator
- 95% Generator Efficiency

- 73.2 klbf max. TO Thrust**
- GTF UHBH Engines
- 3.05m (121 inch) Fan Diameter
- 1.37 Design FPR

*) Net thrust after BLI (cf. book-keeping acc. to Bijewitz et al., 2016)
**) SLS, ISA
Initial Aero-Shaping and Structural Design Concept

➤ **Aero-numerical analysis**
- Initial aero-shaping refinement using MTFLOW and RANS CFD in ANSYS Fluent®:
 - 2D axisymmetric steady state RANS
 - k-ω-SST, y+ ≈1
 - BLI fan actuator disk model: axial momentum & energy volume sources in fan plane

➤ **Numerical analysis of structural design**
- Strain, stress and local displacement assessment for CS-25 load cases
- Focus on weights prediction for:
 - the fuselage;
 - the fuselage-wing junction;
 - the aft-fuselage nacelle; and,
 - the empennage group
- Learn more: Presentation on structural modelling by Prof. Goraj, Session 1.10, 11:00hrs, Thursday
Design of the Turbo-electric Powertrain

Focus of the design and development activities:

- Power generation system (gas turbine engine, multi-megawatt generator, the power electronics and the cooling system)
- Fuselage fan drive system (fuselage fan motor, the power electronics and the cooling system)
- Power transmission (at reduced level of detail)

Initial systems architectural layout:

- DC power transmission from main power plants to fuselage fan
- Four independent DC lanes for each power plant
- Main power plant layout:
 - Initial stage configuration
 1 (Fan) 3 (IPC) 9 (HPC) 2 (HPT) 3 (LPT) 1 (PT)
 - Generator integrated in hub of a free Power Turbine (PT)
Aerodynamic Testing – Overall Configuration

- Testing of modular PFC aircraft wind tunnel model at low-speed facilities of TU Delft

- Open Jet Facility (OJF): closed-loop wind tunnel with open test section, octagonal outlet section 2.85 m wide, maximum velocity: 30 m/s

- Low-Turbulence Tunnel (LTT): octagonal test section with a 1.80 m x 1.25 m cross-section, 2.60 m in length; operational velocity up to 120 m/s, freestream turbulence intensity below 0.1%.

- Initial test results from generic model:

 - Propeller performance at \(V_\infty = 25 \text{m/s} \): approx. 14% reduced power due to BLI
Aerodynamic Testing – BLI Fuselage Fan

➤ Low-speed BLI Fan Rig facility at the University of Cambridge
 ➤ Emulation of ingested velocity profile by 3D-printed variable porosity distortion gauzes
 ➤ 3D steady velocity and pressure fields determination by 5-hole pressure probe at 5 traverse planes
 ➤ Rig currently modified incl. new hub & casing geometry
 ➤ Fan stator by 3D printing + rotor machined from aluminium

➤ Stepwise approach to fuselage fan aerodynamic analysis
 ➤ Development and computational assessment of 3 fan designs
 ➤ 1. Rig-scale fan optimized for clean inflow
 ➤ 2. Rig-scale fan optimized for BLI conditions
 ➤ 3. Full-scale fan optimized for BLI conditions
 ➤ Manufacturing and detailed testing of fan design #2
 ➤ Full-annulus, unsteady CFD of operational behavior for fan design #3

Distortion gauze
Flow straightener
Rotor
Stator
Throttled exhaust to atmosphere

Ref.: Gunn and Hall, ASME GT2014-26142, 2014
Propulsive Fuselage Technology Roadmap

CENTRELINE Project Focus

Coordinator: Bauhaus Luftfahrt e.V.
Contact person: Dr. Arne Seitz
Address: Willy-Messerschmitt-Straße 1
82024 Taufkirchen
Germany
Email: arne.seitz@bauhaus-luftfahrt.net
Project website: http://www.centreline.eu

Thank you for your attention!